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Figure 1: Our system automatically reconstruct photo-realistic face videos for users wearing HMD. (Left) Input IR eye images. (Middle)
Input face image with upper face blocked by HMD device. (Right) The output of our system.

Abstract
A head-mounted display (HMD) could be an important component of augmented reality system. However, as the upper face
region is seriously occluded by the device, the user experience could be affected in applications such as telecommunication and
multi-player video games. In this paper, we first present a novel experimental setup that consists of two near-infrared (NIR)
cameras to point to the eye regions and one visible-light RGB camera to capture the visible face region. The main purpose of
this paper is to synthesize realistic face images without occlusions based on the images captured by these cameras. To this end,
we propose a novel synthesis framework that contains four modules: 3D head reconstruction, face alignment and tracking, face
synthesis, and eye synthesis. In face alignment and tracking, we propose a novel algorithm that can robustly align and track a
personalized 3D head model given a face that is severely occluded by the HMD. In eye synthesis, in order to generate accurate
eye movements and dynamic wrinkle variations around eye regions, we propose another novel algorithm to colorize the NIR eye
images and further remove the “red eye" effects caused by the colorization. Results show that both hardware setup and system
framework are robust to synthesize realistic face images in video sequences.

1. Introduction

With the recent surge of interests in virtual reality (VR) and aug-
mented reality (AR) techniques, it is increasingly common to see
people wearing head-mounted displays. Often taunted as a new
means for social interactions, the form factor of these HMDs, how-
ever, severely limit one common form of interactions, that is face-
to-face communications, either in the same physical space, or con-
nected via imaging techniques (e.g., video teleconferencing). In the
foreseeable future, HMDs that offer an immersive or seamless ex-
perience will severely occlude a large portion of the face. As a re-
sult, it is difficult or even impossible for other people to identify the
user, facial expression, and eye gazes.

We are certainly not the first to identify this problem. There are
several recent research papers that aim to address this problem.
They can roughly be divided into two categories. The first is to

find ways to track the expression, using cameras or other sens-
ing devices embedded inside the helmet such as in [OLSL16,
LTO∗15, TZS∗16b]. The tracked expression is then used to drive
an avatar. While very impressive results, in both the tracking accu-
racy and the realism of the final synthesized face images, have been
demonstrated, approaches in this category are limited to providing
a talking head experience, body movement and gestures, which are
also important for communications are missing. The second cate-
gory aims to inpaint the occluded facial part, making it possible to
present the full picture as if the subject is not wearing the HMD at
all. This approach is quite difficult since the occluded part is sig-
nificant and we are very sensitive to artifacts on the face. We have
found only one paper following this direction. In [BAFD∗15], Bur-
gos et al. first train a regression model of a subject’s expressions,
then based on the unclouded part (e.g., lower face) to synthesize a
complete face image with expressions. Limited results have been
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presented and strong artifacts are shown in the reconstructed im-
ages.

In this paper, we present a novel framework in the second cate-
gory to digitally remove the HMD. We use a main stationary cam-
era to capture the subject, as in a typical video conference setup.
In addition, we add two small near-IR cameras inside the HMD to
track the eye’s motion. The goal is to synthesize face part occluded
in the main camera image, including pasting the eye images to the
correct position and restoring hairline compressed by the straps. To
do that, we first build a personalized 3D face model of the sub-
ject by using structure-from-motion and morphable model. Using
the reconstructed model, we precisely track the subject’s head pose
and expressions at run-time. The tracked expression information,
eye images, as well as images of the subject without wearing the
HMD, are used together to fill in the occluded part.

Since we are literately putting different pieces of face parts to-
gether, accuracy is of paramount importance. The most significant
innovation in this paper is our novel system calibration, tracking,
and image warping techniques. In addition we have developed a
novel method to colorize eye regions synthesized from NIR cam-
eras and refine them by removing “red eye" effects. Our method is
superior than standard red-eye removal method since the eye im-
age is captured under near-IR illumination in which the eye actu-
ally appears differently than from regular illumination. As shown
in Figure 1, our system has been able to produce photo-realistic
results.

The rest of the paper is organized as follows. In Section 2, we
discuss related works. Section 3 presents our hardware setup and
the method we used to calibrate our system. Our framework and
algorithms are described in Section 4, 5, 6, 7, 8. Experimental re-
sults, limitation and future works, conclusions are given in Sec-
tion 9, Section 10 and 11 respectively.

2. Related Work

Analysis and synthesis of face expressions have been studied in the
past few decades. There are various algorithms have been proposed.
For instance, active appearance models (AAM) and 3D morphable
models have been successfully used in many applications to model
shape and texture variations of faces [XBMK04,BV99]. Depth sen-
sors are also widely used to reconstruct 3D face models in recent
years. Cai et al. presented a deformable model fitting algorithm to
track 3D face model using a commodity depth camera [CGZZ10].
Ichim et al. reconstructed personalized textured avatar from hand-
held video, which could further be used for tracking and animation
in [IBP15]. In [TZN∗15], Thies et al. proposed an reenactment al-
gorithm to transfer facial expressions from one person to another
in real-time assuming no occlusions present. A RGB-D sensor is
used to estimate and track face model, head pose, and illumination.
Thies et al. further extend their reenactment to only use RGB sen-
sor in [TZS∗16a]. It is easy to find out that most of these algorithms
are not designed for HMDs. Therefore, they often have either dif-
ferent inputs or outputs comparing with our system and algorithms.
For example, some of them may not be robust under serious occlu-
sions. Some of them output animations of 3D face models, in which
eye gazes are not important.

A few research has been done recently to drive 3D avatars for
users with HMD. In [RPZZ14], Romera-Paredes et al. adopted an
experimental setup that has two visible light cameras which point-
ing towards eye regions from oblique angles to capture the eye
movement. They built a regression framework from the the cap-
tured partial face images as input to the blending weights of per-
sonalized blendshapes. Multiple machine learning algorithms, such
as ridge regression and convolutional neural networks are applied
in their framework. In [LTO∗15], Li et al. develops a novel HMD
that uses electronic materials (strain sensor) to measure the sur-
face strain signals and RGB-D camera to track visible face regions.
A linear mapping is trained between the blendshape coefficients
of the whole face and the vector that concatenates strain signals
and the blendshape coefficients of the visible face part. This map-
ping is then used to animate virtual avatars. In [OLSL16], they
propose an approach for 3D avatar control based on RGB data in
real-time. The mouth and eyebrow motion is captured separately
by an external camera which attached to HMD and two IR cam-
eras mounted inside the HMD. This data is further used to train a
regression model that maps the inputs to a set of coefficients of a
parametric 3D avatar. All the above approaches are aimed at 3D
parametric avatar driven for HMD users.

Recently, In [TZS∗16b], Thies et al. propose a novel approach
for real-time gaze-aware facial reenactment for user’s with HMD.
They use a RGB-D camera to capture and track the mouth mo-
tion and two internal IR cameras to track the eye gazes. They
then reconstruct 2D face images by using the tracked expression
and pre-recorded videos of the user with eye-gazed corrected. Al-
though they can reconstruct the full face in photo-realistic videos
by self-reenactment,their result will lose information in original in-
puts, like background, head pose, gestures and other information. In
[BAFD∗15], Burgos et al. build a system to reconstruct face with
HMD in 2D videos by using a personalized textured 3D model.
They use a RGB camera to capture face videos and track the ex-
pressions, then the textured model is projected and blended with the
remaining mouth part. Their approach do not handle eye gaze and
eye movement. In our approach, we will reconstruct HMD faces
in photo-realistic videos with ground truth eye movement and the
visible information in original input will be faithfully reserved.

In our proposed algorithm, we also integrate various techniques
such as landmark detection [CWWS14], colorization [RAGS01,
LLW04, SPB∗14], and feature extraction [KS04]. Details are pro-
vided in corresponding sections.

3. Hardware Setup and Calibration

3.1. Hardware Setup

We have built two prototypes for experiments and validation. Our
first system is a fixed setup, as shown in Figure 2 right. It consists of
three cameras. The middle one is a color camera with a resolution
of 1280× 960, it is used to capture the entire face. The other two
cameras are near-infrared (NIR) VGA (640× 480) cameras cap-
turing the two eye regions using narrow field-of-view lenses. IR
LEDs are used to provide sufficient illuminations for the NIR cam-
eras. All cameras are synchronized. The color image can capture
the full face of the user without any occlusion. We then simulate
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the occluded face image by synthesizing masks to block the upper
face. In this setup, the three cameras are used to simulate the case
in which all three cameras are rigidly attached to the HMD display,
so that head pose doesn’t need to be tracked and always be frontal.
This setup allows us to capture ground truth images for evaluation
purpose. To use this setup, the user is expected to put her/his face
on the chin reset to maintain the relative transformation between
her/his face and all the cameras.

The second system is a mobile one (Figure 2 Left). We use a
VR-headset case, one of these types that allow a user to insert a
mobile phone to create a low-cost head-mounted display (HMD).
We insert two small NIR cameras inside the shell to observe the
eye region. We also have two micro IR LEDs besides the two cam-
eras. It should be noted that since our camera/LED set is not small
enough, we do not have the phone inserted during all of our ex-
periments. This limitation could certainly be solved by better (and
more costly) engineering. In this mobile setup, a user should wear
our modified headset as usual, a fixed RGB camera is used to ob-
served the user. This is similar to a regular video conference setup
except that the user’s face is severely occluded physically and can
move freely in any poses.

Figure 2: Two experimental systems we have built. (Left Col-
umn)our mobile setup. Two small cameras are inside the VR-
display case. (Right Column) our simulation setup with three cam-
eras, two for eyes and one for the entire face. The occlusion on face
is synthesized by applying a mask.

3.2. Calibration

We first have to geometrically calibrate all cameras. While the fixed
setup is easy to deal with, the mobile one is more difficult since the
HMD with two internal IR cameras can move freely. However, we
notice that the geometries among the three cameras are fixed. We
can extract the extrinsic of NIR cameras as long as we know the ex-
trinsic of HMD. We describe our procedure for the mobile system
calibration and tracking. We first intrinsically calibrate all the cam-
eras using standard techniques. We then print out a small checker-
board pattern and attached it to the VR-display case so that one half
of the patterns are visible to the face camera and the other half is

visible to the NIR eye camera. Since the size of the grid is known,
we can estimate the pose of these cameras using a Perspective-n-
point algorithm (PnP) (e.g., [LMNF09]). Let’s denote the points
on the checkerboard pattern as Xc and the relative poses of the
face camera and the eye cameras as Mc→ f , Mc→el , and Mc→er

respectively. Furthermore, we put a number of color dots on the
front side of the VR-display case. These dots are used for tracking.
They are co-planar and their relative positions are measured. These
points, denoted as Xh, define their own coordinate space. Using
PnP, the face camera’s pose Mh→ f in the HMD (Xh) space can be
estimated. Using the face camera as a bridge, we can now calcu-
late the eye-camera’s pose in the space of Xh. For the left eye, it is
Mc→el M−1

c→ f Mh→ f . Now we can remove the checkerboard pattern
(since it will occlude the eye cameras). At run time, the face camera
will track the HMD’s pose using these color dots and therefore the
pose of the eye cameras. The involved coordinate transforms and a
photo of our calibration patterns are shown in Figure 3.

Figure 3: An illustration of our calibration procedure for the mo-
bile setup. One checkerboard is placed behind the HMD. The trans-
formations between different cameras/coordinate systems are la-
beled. Inset (a) shows an image captured by the face camera and
inset (b) shows an image captured by one of the eye cameras.

4. System Overview

Our system consists of four modules as shown in Figure 4. We re-
construct a personalized 3D animatable head model from a video
sequence captured off-line in the first module (Section 5). The 2D
facial landmarks, 3D sparse point cloud and morphable model fit-
ting are integrated together in our optimization algorithm to obtain
an accurate head model. In the second module (Section 6), we pro-
pose a novel algorithm to align 3D head model to the face image
that has been severely occluded by the HMD. Instead of fitting the
head model to the small lower face portion for each image frame,
our algorithm first estimates the transformation between the HMD
and the head model, which is fixed once the user puts on the HMD.
Then, by simply tracking of the HMD pose, we can get the head
pose robustly with the estimated transformation described above.
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The facial expression coefficients are then computed to capture the
expression in each frame. In the third module (Section 8), we pro-
pose another novel algorithm to process the warped near-infrared
eye images. The eye images are first colorized based on the color
information from the image template. The obvious artifacts (e.g.,
“red eye") in the eye regions also are removed in this module. In
order to generate realistic face images without occlusions, in the
fourth module (Section 7), we apply a boundary constrained warp-
ing algorithm to first align the reference image with the target oc-
cluded face image and then compose the complete face from dif-
ferent sources by a mask.

5. 3D Head Reconstruction

In the off-line data acquisition stage, we record a video sequence
of a user with neutral expression under various head poses( These
data will also be used in Section 7). The image frames are used
to reconstruct a personalized 3D head model for the user. We first
apply the structure from motion (SfM) to estimate a sparse point
cloud and projection matrices [HZ03]. A bi-linear face morphable
model described in [CWZ∗14] is then used to reconstruct a dense
3D model M with 11K vertices from the sparse point cloud,

M = B×2 Cid×3 Cexp, (1)

where B ∈ R11K×50×25 is the reduced core tensor, Cid ∈ R50

and Cexp ∈ R25 stand for the column vectors of identity weights
and expression weights respectively. As we assume the neutral ex-
pression during the reconstruction, the expression weights Cexp are
fixed and only identity weights Cid are estimated.

Denote the reconstructed sparse 3D point cloud as Ms, our fitting
energy function is defined as,

E =
N

∑
k=1
‖sRMk + t−Ms

k‖
2, (2)

where the 3D rigid transformation between the sparse point cloud
and the bi-linear face model consists of a scale factor s, a 3D rota-
tion matrix R and a translation vector t. Mk and Ms

k are the kth pair
of 3D vertices in the dense 3D head model and sparse point cloud.
In each iteration, N vertices are selected from the spare point cloud
and the corresponding nearest vertices in the dense head model are
updated. The initial transformation is computed by using seven 3D
facial landmarks reconstructed in 3D point cloud.

We further improve the reconstruction accuracy by using 2D fa-
cial landmarks in images that are detected based on the real-time
algorithm proposed in [KS14]. The cost function is defined as,

E =
N

∑
i=1

K

∑
j=1
‖PiM j− li j‖2 +λ

50

∑
i=1

((Ci
0−Ci

id)/θ)2 (3)

where N image frames and K facial landmarks in each frame are
used. M j is the jth 3D facial landmark in the dense head model,
li j is the jth facial landmark in the ith image frame, and Pi is the
projection matrix for the ith image frame. The second term in the
equation 3 is a regularization term that makes the estimated head
model M close to the head model estimated from equation 2, which

is denoted as C0. This term also prevents the the geometry from
degeneration and local minima.

6. Face Alignment and Tracking

As the face is severely occluded by the HMD, the alignment could
be highly inaccurate if we align the 3D head model with the face
image directly according to remaining visible facial features. In this
section, we present a novel approach based on our hardware con-
figuration and calibration.

6.1. Facial Landmark Detection

As we need to use facial landmarks in our alignment, three land-
mark detectors are trained on occluded face image and eye images
separately(left and right eye, lower facial part separately). As illus-
trated in Figure 5, we use 5 landmarks for eyebrow and 6 landmarks
for eye boundary in each eye image, 20 landmarks for mouth, 5
landmarks for nose base and 11 landmarks for lower face boundary
in the occluded face image. The cascaded learning framework de-
scribed in [CWWS14] is applied. In this learning framework, sim-
ple pixel-difference features are extracted and two-level boosted
regression is applied. In the internal level of the regression, a set
of primitive regressors (e.g., ferns) are trained. Few thousands of
training eye images are obtained by cropping labeled face images
of the LFW data set [HRBLM07]. As the eye is often located in
the middle of the captured image without in-plane rotations in our
hardware setup and we could provide bounding box of lower fa-
cial part by tracking HMD, we achieve accurate eye and lower face
landmarks predictions.

6.2. Initial Alignment

After the offline calibration described in section 3.2, it is robust to
track the HMD’s pose (e.g., Ph→ f ) in real time. The transforma-
tions (e.g., Mel→h and Mer→h) between eye cameras and the HMD
are also fixed after the calibration. However, the transformation be-
tween the head and the HMD is different for different users. Even
for the same user, the transformation could also be different every
time when they wear the HMD. Therefore, it is necessary to esti-
mate the transformation (represented as rotation R∗ and translation
T∗) between the 3D head model and the HMD after a user puts on
the device.

In our system, we conduct an initial alignment right after a user
puts on the HMD. The user is instructed to change head pose with
a neutral expression. The alignment is formulated as a non-linear
minimization problem. The cost function Einit consists of two terms
as shown in Equation 4.

Einit = E f +λEe (4)

where λ is the weight to control Ee. The first term E f is the pro-
jection error between visible facial features and corresponding 3D
points of the head model projected to images. This term is defined
in the following Equation.

E f = ∑
i

d(xi,Ph→ f R∗T∗Xi)
2 (5)

where xi and Xi are the 2D visible facial landmarks in the ith image
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Input Frame

Eye Synthesis

Face Alignment and Tracking Face Synthesis

Colorized Infrared Eye Images

Pose and Expression Tracking Reference Image retrieved  Output Synthesized Image

3D Head Reconstruction

Pre-Recorded sequences

Reconstructed 3D Head

Figure 4: Conceptual overview of our system. From the first stage to the fourth stage, our goal is to synthesize a photo-realistic face image
without occlusion.

Figure 5: Illustration of the landmarks set we adopted in our sys-
tem.

frame of the face camera and corresponding 3D points of the head
model, d(·) represents the Euclidean distance between two 2D im-
age points, and Ph→ f is the projection matrix from the HMD device
to the face camera.

The second term Ee is defined as

Ee = ∑i d(xi,Ph→ f Mel→hR∗T∗Xi)
2+

∑i d(xi,Ph→ f Mer→hR∗T∗Xi)
2 (6)

where xi and Xi are the 2D visible landmarks in the ith image frame
of the NIR eye camera and corresponding 3D points of the head
model, and Mel→h and Mer→h are the transformation matrices from
eye cameras to the HMD device.

The initial guess of R∗ is set to the identity matrix as the rota-
tion between the HMD device and the head model is often very
small, and the initial guess of the translation vector in T∗ is set
to [0,0,dz], where dz is the rough distance between the eye region
and the corresponding near infrared camera. The 3D point Xi on the
head model is computed by finding the nearest neighbor of the in-
tersection point between the head model and the ray back projected

from xi. The Levenberg-Marquardt iteration method is applied to
optimize this objective function.

6.3. Real-time Alignment

With the initial alignment, we can easily track the head pose in
real time by estimating the projection matrix Ph→ f for each image
frame. In this step, we further estimate the expression weights Cexp
of the bi-linear face model described in Equation 1. Note that the
identity weights Cid are fixed in this step. The expression weights
are estimated based on the energy function,

Eexp = E f +λ1Ee +λ2Et +λ3Es, (7)

where E f and Ee are defined in Equation 5 and 6 with Xi replaced
by the bi-linear model and the transformation matrices (R∗ and T∗)
fixed. Et is the constraint imposed by the expression weights from
the previous image frame. Et is defined by,

Et(Cexp) =‖Ct−1
exp −Ct

exp ‖2, (8)

where Ct
exp and Ct−1

exp are the expression weights for current and
previous image frame respectively. Es is the regularization term that
forces the expression weights to be close to the statistical center
which avoids of degeneration. Es is defined as,

Es =
N=25

∑
i=1

(Cexp,i/θi)
2 (9)

where θ is the mean vector. Es can also be defined as a Tikhonov
regularization energy term CT

expDCexp with D = diag(1/θ
2). The

energy function Eexp is minimized by the least squares method in
real time. The weights we used to balance the terms in our setup is
λ1 = 2, λ2 = 2, and λ3 = 0.7.

Our alignment and tracking algorithm is summarized in Algo-
rithm 1.
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Algorithm 1: Head Pose and Expression Tracking
Data: Image frames captured by three cameras and a

personalized 3D head model.
Result: Alignment between the 3D model and image frames,

Ph→ f , R∗, T∗, Cexp
Initial Alignment
1. Estimate Ph→ f for each frame based on the color markers.
2. Facial landmark detection on both occluded face image and eye

images.
3. Initialize R∗ to the identity matrix and the translation vector to

[0,0,dz].
4. Back project facial landmarks xi. Corresponding Xi are

computed by finding the nearest neighbor of intersection with
the 3D head model.

5. Estimate R∗ and T∗ by minimizing cost function in Equation 4.
6. Apply transformation to the 3D head model with new R∗ and T∗

and go to step 4, until converge.
Real-time Alignment
1. Estimate Ph→ f for each time frame based on the color dots.
2. Facial landmark detection on both occluded face image and eye

images.
3. Estimate Cexp for each time frame by minimizing cost function

in Equation 7.

7. Face Synthesis

In our face synthesis, we first search for a template image from the
data set we have captured off-line, which contains similar head pose
as the query image. Then we apply a two-step warping to warp both
the template image and the NIR eye images. This method mainly
fills the blocked face region with visible region unchanged. Note
that in [BAFD∗15], the author synthesized the occluded face by
rendering of the textured model. This model based method produce
face images with strong artifacts especially on the boundary be-
cause they don’t model hair motion, illumination. Thus we choose
to complete the face using real images.

7.1. Retrieval of Reference Image

The similarity between ith image in the data set and the query im-
age is measured based on three distances as shown in Equation 10.
The first term is the distance between head poses of the query im-
age (Hq) and the reference image candidate (H i

r). The head pose is
measured by pitch, yaw, and roll angles based on the transforma-
tion Ph→ f R∗T∗ that is described in Section 6.2. The second term is
the distance between 2D facial landmarks of the selected reference
image in previous time frame (Lr−1) and current reference image
candidate (Li

r). This term removes large 2D translation between two
consecutive image frames even they have similar poses. The third
term is defined so that current image candidate (Si

r) and previous
reference image (Si

r−1) have close time stamps. This term could
further make the selected reference images continuous.

D =‖ Hq−H i
r ‖2 +w1 ‖ Li

r−Lr−1 ‖2 +w2 ‖ Si
r−Sr−1 ‖2, (10)

where w1 and w2 are the weights for the second and third term
respectively.

7.2. Face and Eye Image Warping

As the 3D head model have been estimated and aligned with both
the reference image and the query image, we project 3D head mod-
els to generate dense 2D face meshes. The face mesh for the ref-
erence image is then warped to the face mesh for the query image.
Particularly, as we tracked the expression of the query image, the
deformation caused by large expressions reflects to 2D mesh which
will enhance the alignment accuracy of the reference image after
warping. In order to warp the reference image naturally without ob-
vious distortions, we divide the image to n×m uniform grid mesh.
The energy function is defined as,

E = Ed +αEs +βEb + γEh (11)

where Ed is the data term that assumes bilinear interpolation coef-
ficients remain unchanged after warping, Es is similarity transfor-
mation term based on two sets of mesh points, Eb is the term to
reduce the transformation outside the face region. Details of these
three terms can be found in [ZHG∗14]. As we also want to align
the silhouette of the warped template image with the query image
to avoid artifacts on the face boundary when blending the warped
image and the query image. Therefore, we introduce another term
Eh to constrain the silhouette. Denote P̂s and Ps as a pair of 2D cor-
respondence points on silhouette of template image and query im-
age. The template image is divided into n×m uniform grid mesh V̂ ,
the warping problem is to find warped version V of this grid mesh.
Then Eh can be formulated as bellow:

Eh =
N

∑
i=1
‖wiVi−Pi‖2 (12)

in which N stands for the number of corresponding pairs on silhou-
ette, each of the P̂i can be represented as the bilinear interpolation
of mesh grids which contains P̂i, P̂i = wiV̂i, in which wi remains
unchanged after warping. We define the correspondence pair P̂ and
P by first finding the silhouette points on the query image, then we
use the 3D model as a bridge to find the corresponding 2D points
on the template image. Figure 6 shows the effect of this term. Note
that the artifacts in red rectangle caused by misalignment of sil-
houette is resolved by adding the term Eh, which forces the face
boundary of the warped template to align with the query image.

In system calibration, we obtained the 3D transformation be-
tween eyes cameras and the HMD device. After the initial align-
ment, we aligned the head model to the HMD to obtain the projec-
tion matrix from the head model to eye images. Therefore, we can
also easily warp the NIR eye images to the query image. The eye
images contain correct eye gazes and the dynamic wrinkles around
eye regions that are necessary for the face synthesis. As these im-
ages have no color information, we propose a novel eye synthesis
algorithm that is described in details in Section 8.

In the final step, we blend the query image which is partially
blocked by HMD, warped reference image, and two colorized eye
images together. As the lower face in the target image is often
darker than faces captured under the same illumination in the data
set due to the shade of the HMD, we first conduct a histogram trans-
formation to adjust the reference and two eye images to match the
color of the query face image. We then blend them by using the
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Figure 6: Illustration of the effect of silhouette constraints. (Left)
is the input target frame needs to be reconstructed. (Middle) is the
blending result by warping the template without term Eh. (Right )is
the blended result by warping the template with term Eh. The result
shows that this term forces the warped template image and target
image to align on the boundary to eliminate the artifacts.

Laplacian blending approach [AAB∗84]. Figure 7 shows the for-
mation of the final result. Note that in the rightmost image of Fig-
ure 7, we further apply the background replacement to remove the
HMD region and wires that are far from the head and not covered
by the mask image.

Figure 7: Illustration of the final image formation. (from left to
right) (1) The mask used to blend images from different sources.
The green region represents the background we would like to keep
in the final result. The red region represent the head region that is
extracted from the warped reference image. The purple region is
the region corresponding to the NIR eye images. Note that there
is a transformation region between the red and green region. This
region feather the boundary so that different image sources could
be transformed smoothly from one to another. (2) The query image
with the face occluded by the HMD. (3) The blending result of the
query image, warped reference image, and colorized eye images.
(4) The final blending result after background replacement.

8. Eye Synthesis

In this section, we process the warped NIR eye images in two steps.
Firstly, we colorize the eye images based on the color information
from the reference image. Secondly, we further refine the eye re-
gions by removing obvious artifacts (e.g., “red eye") during the
colorization.

8.1. Colorization

We use the Lab color space as it is close to human visual concep-
tion and separates the illuminance channel from color channels. We

denote the input NIR image as I, the reference image as M, and out-
put color image as C. M is decomposed to three channels ML, Ma,
and Mb. I is assumed as the grayscale image for C. The coloriza-
tion consists of two steps. We first transfer I to CL based on the ML.
Then we transfer Ma and Mb to Ca and Cb.

Two existing algorithms [RAGS01, SPB∗14] are applied and
evaluated to transfer from I to CL. The first algorithm [RAGS01]
is a straightforward histogram transfer based on the standard
deviations and mean values of I and ML. In the second algo-
rithm [SPB∗14], the images I and M are aligned based on the land-
marks and the SIFT flow [LYT11]. Then two images are decom-
posed into multiscale Laplacian stacks. These stacks are updated
by the gain maps and are aggregated to generate CL. In our prob-
lem, the performance of the second algorithm could slightly better
than the first algorithm. However, it is more time-consuming due to
the alignment based on the SIFT flows.

In the second step, we estimate Ca and Cb using the algorithm
in [LLW04]. The color in the channel a is computed by minimizing
the following energy function

E(a) = ∑
p
((a(p)− ∑

qεN(p)
wpqa(q))2 +α∑(a(pm)−Pm)

2 (13)

where a(p) is pixel p on channel a, N(p) is the neighbor pixel of
p. pm and Pm are the pre-defined seed pixels (i.e., ‘micro scrib-
ble’ defined in [LLW04]). This equation minimizes the difference
between the color at pixel p and its weighted averages of the neigh-
boring pixels. The weight wpq is computed based on CL and statis-
tics of the local patch around p. The color in the channel b is also
computed in the same way.

However, we need to be careful to select seed pixels. If we uni-
formly sample from image M, colors of some seed pixels could be
wrong on the image I, such as moles and highlights. These colors
propagate to following image frames gradually and generate obvi-
ous artifacts. To avoid this, we use a voting scheme to remove the
unreliable seed pixels. We first run adaptive k-means clustering to
segment the image M at gray scale level. Then we only select seed
pixels with high confidence that is measured by

error =
|Ip− Ic|

Ic
(14)

where Ip is the intensity value of pth pixel in I and Ic is the intensity
value of the center of each segment. We only select the seed colors
with error < 0.06.

8.2. Refinement of Eye Regions

The eye region after colorization often contains very strong artifacts
(i.e., “red eye" effects) as shown in Figure 8(b). One possible reason
is that we treat the NIR image as the grayscale image. We found
that, the contrast in a NIR eye image is often weaker, especially the
contrast between sclera and skin and the contrast between iris and
sclera. As a result, skin colors could be transferred to the regions
like sclera and iris, which easily generates “red eye" effects.

In this section, we propose an algorithm to refine the eye re-
gions. We first detect iris and pupil boundaries in both near-infrared
and color images using the intergrodifferential operator in [Dau04].
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Combining with the eye landmarks, we segment the eye regions
into three categories, pupil, iris, and sclera. We then apply his-
togram transformation separately in the regions of these categories.
We denote the image after histogram transformation as C′. This
result partially removes “red eye" effects. However, it introduces
strong artifacts around boundaries of these categories and makes
the result unnatural. In order to remove the artifacts, we formulate
a minimization based on a cost function with three terms.

Ed = ∑
pm

(C′′L (pm)−C′L(pm))
2 (15)

Es = ∑
p
((C′′L (p)− ∑

qεN(p)
wpqC′′L (q))

2 (16)

Eb = ∑
p
(|Np|C′′L (p)− ∑

q∈Ω

C′′L (q)− ∑
q 6∈Ω

CL(q)− ∑
qεNp

Vpq)
2 (17)

E = Ed +α1Es +α2Eb (18)

where C′′L is the L channel of the output eye image C′′ (the same
procedure is also applied to a and b channels), pm is a seed pixel
(the seed colors are selected using the criteria described in Equa-
tion 14), C′L(pm) and C′′L (pm) are values of the L channel on pixel
pm for input image C′L and output image C′′L respectively, Np is
neighboring pixels of pixel p, |Np| is the number of Np, Ω is the
mask that includes only the eye region, and Vpq =CL(p)−CL(q) is
the gradient value of this two pixels. α1 and α2 are tuned based on
our experiments. The weight wpq is proportional to the normalized
correlation between two values of the L channels. wpq is given by

wpq = 1+
1

σ2
p
(CL(p)−µp)(CL(q)−µp) (19)

where µp and σp are the mean and standard deviation of pixel val-
ues in an image patch around p.

The first term Ed is the data term that color an unknown pixel
same as the seed pixel in the input image. Es is the smoothness term
that makes the color are smoothly transformed among its neighbor-
hood. The last term Eb is the boundary term that is inspired by
the gradient image editing [PGB03]. This term is equivalent to the
Poisson equation with Dirichlet boundary conditions. The refine-
ment algorithm is summarized below.

Figure 8 shows one group of eye images after refinement. In this
Figure, we can find that image (b) contains “red eye" effects, image
(c) has strong artifacts around boundaries of segmentation, and im-
age (e) is the result using all three terms and “red eye" effects are
removed.

9. Experiments

Our system framework is tested on both simulation and mobile se-
tups. For the simulation setup, the goal is to validate and quantify
the accuracy of our system.

Algorithm 2: Refinement of eye regions.
Data: The eye image C that is the color image after

colorization and contains “red eye effects".
Result: Refined eye image C′′.
1. Detection of iris and pupil boundaries based on the

intergrodifferential operator in [Dau04].
2. Segmentation of pupil, iris, and sclera using eye landmarks and

boundaries of iris and pupil.
3. Histogram transformation for each category and each color

channel. C′ is denoted as the output after transformation.
4. Selection of seed pixels pm based on Equation 14.
5. Minimization of Equation 18.

Figure 8: Results of eye refinement. (a) near-infrared image. (b)
result after colorization (with “red eye" effects). (c) result only us-
ing the date term Ed . (d) result using data and smoothness terms
(Ed and Es). (e) result using all three terms (Ed , Es, and Eb). (f)
reference eye color images.

9.1. Runtime

Our implementation on CPU takes around 568 ms to process one
frame on Intel Core i7-4710 CPU(3.4GHz) with the color image
in resolution of 1280× 960 and two NIR images in resolution of
640×480. Table 1 shows the runtime of major components in our
system. The face synthesis component consists of reference im-
age retrieval, face warping and final blending, which is the most
time consuming module. We believe that, by using the parallel pro-
cessing power of GPUs and reducing the image resolution, we can
achieve real-time performance.

Table 1: Runtime of Different Modules

Tracking Eye Colorization Face Synthesis

8ms 160ms 400ms

9.2. Evaluation of 3D reconstruction

We first scan 3D head models with a high resolution structured
light 3D scanning system which has an average reconstructing er-
ror less than 2mm. More details about this scanner could be found
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Figure 9: Evaluation of 3D reconstruction. from left to right (1)
The head model reconstructed by our algorithm. (2) The model
scanned by a structured light 3D scanning system. This model
serves as ground truth. (3) The error map between our model and
the ground truth.

Figure 10: Evaluation of tracking with HMD. The 3D model is
overlaid on the original input frame. Facial expression, especially
the eye blinks, are tracked robustly by our algorithm.

in [Zha15]. These 3D models serve as ground truth in our evalu-
ation. To measure the difference between the reconstructed model
and the ground truth, we first roughly align them by computing a
transformation between them using 3D facial landmark correspon-
dences and then the ICP algorithm [BM92] is used to refine the
alignment. In order to evaluate the surface distance, we define each
3D point on the reconstructed model p and its corresponding point
p̃ as a pair, in which p̃ is the first intersection on the ground truth
mesh along the normal direction of p. The Euclidean distances are
then calculated for all the pairs. The mean error distance between
the reconstructed model and the ground truth is 2.926 mm. Figure 9
shows one example of our reconstructed model, the corresponding
ground truth, and the error map.

9.3. Evaluation of Face Tracking

Our algorithm described in section 6 can robustly track 3D face
models in real-time. As shown in Figure 10, these models could
contain various facial expressions, such as eye blinks and mouth
movements. In order to further evaluate the tracking performance,
we project a virtual pattern to each input image frame. As shown in
Figure 11, we can find that the virtual pattern is deformed smoothly
and consistently with various mouth movements. Video of Track-
ing results can be found in supplementary material.

Figure 11: Evaluation of tracking performance with a projected
virtual pattern. The virtual pattern is deformed smoothly and con-
sistently with the mouth movements.

9.4. Evaluation of Eye Synthesis

It is essential to generate accurate eye movements in the final syn-
thesized face image. Figure 12 demonstrates our results of eye syn-
thesis for three different users. The first column are the reference
images retrieved from the pre-recorded image frames. The second
column contains the input NIR images. The third column contains
images after colorization which is the first step of our eye synthe-
sis. The color appearances have been adjusted to be very similar to
the reference images. However, the “red eye" effects are also quite
obvious in these images. After the second step of our eye synthesis
algorithm, the “red eye" effects are removed and more realistic eye
images are generated (the fourth column).

9.5. Evaluation of Face Warping

Instead of using one template frontal face image for all the frames,
we retrieve the data set for the best matched reference image for
each frame based on head pose similarity and time space consis-
tence as described in Section 7.1. Figure 13 demonstrates the ef-
fectiveness of using database and retrieval algorithm compared to
one template. Similar poses will result in more natural warping re-
sults especially on the face boundaries, hair styles and ear shapes.
The reason is that we only have control points inside face region
during warping and we need to keep the background unchanged.

In our system, after the calibration in Section 3.2 and initial
alignment in Section 6.2, we can directly get the head pose for each
frame. It seems that the estimation of expression weights is unnec-
essary as we will not change the lower face part. However, large
mouth motions will deform the face shape which reflects as face
silhouette changes in 2D image. As the 3D mesh works as warping
guidance during the warping of the reference image, we need the
target 3D mesh to be as accurate as possible. Figure 14 shows the
comparison of blending results between tracking with and without
expressions. It is clearly that the middle image has thinner cheek
than the right one and the left one(ground truth) as we warped the
reference image guided by a neutral 3D model. Reflected in blend-
ing results, the absence of expression will lead to artifacts on face
boundary.
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Figure 12: Results of eye synthesis. (1st column) Reference images retrieved from pre-recorded image frames. (2nd column) Input of NIR
images. (3rd column) Results after colorization. (4th column) Results after refinement of eye regions.

Figure 13: Comparison of warping results by using retrieved im-
age and by using one template. from left to right. (1) Target face
image with HMD; (2) Warped version of (3), aligned with (1); (3)
Retrieved reference image in dataset, which has similar head pose
to (1); (4) Warped version of (5), aligned with (1); (5) One frontal
template image.

9.6. Face Synthesis Results

As the ground truth is available in the simulation setup, we can
evaluate our expression tracking and eye colorization algorithm by
computing the error map between our synthesized image and the
ground truth. Figure 15 shows results for different users. The aver-
age intensity error is around 5.6 under the area of mask based on
intensity range from 0∼ 255, which indicates that our eye coloriza-
tion algorithm can produce accurate results. In the simulation setup,
the head pose is fixed. We ask users to perform as much expression
as they can in an off-line expression database. We calculate the ex-
pression weights by using facial landmarks for all the frames in the

Figure 14: Comporison of blending results with and without ex-
pression tracking. The left is the target image with HMD. The mid-
dle is the blending result generated from the reference warped from
3D model without expression. The right is the blending result gen-
erated from the reference warped from 3D model with expression.

database. For the query frame with upper face occluded, we also
calculate the expression parameters by using our algorithm, then
retrieving for the best matched expression in the database. This re-
trieved image is used to fill the missing part of the query image.
Note that in Figure 15, the facial details are reconstructed by using
the best matched expression template in the database, this demon-
strates the effectiveness of our expression tracking algorithm.

Figure 16 shows results for our mobile setup. We have tested our
system on different users with various facial expressions including
eye and month movements. Our results demonstrate the effective-
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Figure 15: Simulation Results. (1st column) are the input images with eye images shown at the bottom of each face image. (2nd column)
are the synthesized face images by our system. (3rd column) are the ground truth images. (4th column) are the error maps between ground
truth and synthesized image.

ness and robustness of our system. More results including videos
can be found in our supplementary material.

10. Limitation and Future Works

Although Mask-off is able to solve a challenge problem in VR, it is
one of the first stepping stones in a new area thus limited in several
aspects.

Our current system requires a personalized database each time
before the user puts on the HMD to ensure the illumination envi-
ronment unchanged between reference image and target image. We
also apply histogram adjustment on reference image to match the
color tone since the lower face will be darker under the shadow
of HMD. However, we don’t really deal with the shadow and illu-
mination changes. One of the future work is to model the albedo
as well as 3D geometry, so that we could handle the lighting en-
vironment variation. For each user, the database only needs to be
captured once and can be applied to different lighting conditions by
using relighting techniques.

Although the current system produces convincing results, there
are still artifacts on the face boundaries, eye regions after blending.
To reduce artifacts, precise processing are required in every steps:
reconstruction, tracking, warping and blending. We believe that the
introduction of deep neural network can provide guidance for ro-
bust warping and blending. Face synthesis in our context can be
regarded as a face inpainting problem. Li et al. explored the possi-
bility in [LLYY17] to complete the face image with occlusion. We
believe that with an initial low resolution complete face image pro-

vided by CNN network, the artifacts on the high resolution results
of our approach caused by boundary misalignment and illumination
variance will be reduced.

In this proposed system, we use color markers to track the HMD.
These markers are assumed in the same plane. This method requires
the frontal panel of HMD to be a planar and the head pose should
not be too large, which limits the application of our method. In-
spired by [TZS∗16b, BAFD∗15], we will replace the markers with
QR pattern, which is more robust to large poses.

One important limitation of our system is the run-time, we can-
not achieve real-time performance required by proposed scenarios.
we would like to explore different alternates to speed up the frame-
work and achieve real-time performance with modern GPU.

11. Conclusions

In this paper, we tackle the face synthesis problem in which the
upper face region is severely occluded by the HMD. We design a
novel system framework that consists of two NIR cameras captur-
ing the eye regions and one visible-light camera to capture the face
image with only lower part visible. In order to synthesize realistic
face images, we present two novel algorithms in our framework.
Firstly, we propose a novel algorithm to align and track 3D head
model based on the input image with a large portion of face oc-
cluded by the HMD. Secondly, a novel approach to synthesize eye
regions is presented. In this approach, we colorize the NIR eye im-
ages and further remove the “red eye" effects.
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Figure 16: Results of our mobile system.
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